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Department of Networked Systems and Services

Budapest University of Technology and Economics
Budapest, H-1111 Hungary

E-mail: {teixeira; huszak}@hit.bme.hu

Continuous dynamic in vehicle movement creates a complex topology environment and
connectivity relationship in Vehicular Ad-hoc Networks (VANETs). Consequently, over-
coming longer transmission connections and reduced transmission reliability has been a
significant problem. During the development of routing methods, fundamental research
focuses on identifying and selecting paths with short distances or pulverization of informa-
tion in environments with high traffic density to transmit packets successfully. As a result,
transmission losses are minimized, and transport conditions are avoided; however, these
techniques struggle to achieve more stable path routes in real-time environments because
of sudden increases in traffic levels. Consequently, a model that effectively monitors the
distance between vehicles and assists VANETs in selecting paths automatically and more
accurately is proposed. To approximate and extend the lifetime of the communication path,
we use an OpenAI Gym environment where a Reinforcement Learning (RL) agent can learn
the route using the distance between cars as a model and define policies with higher life-
time rewards. The algorithm used a trained agent with the Proximal Policy Optimization
(PPO) and Advanced Actor-Critic (A2C) algorithms in our environment. Applying ma-
chine learning on VANETs results in improved network efficiency, which offers real-time
routing information in mobile environments. The simulation results show that RL-based
routing extends the useful life of the route among the investigated methods between the
origin and destination hosts.

Keywords: vehicular ad-hoc network, path lifetime routing, reinforcement learning, A2C,
PPO

1. INTRODUCTION

Several new smart city concepts have been introduced in recent years, where vehicle
communication plays an essential role in Intelligent Traffic Systems (ITS) [1]. Ad-hoc Ve-
hicle Networks (VANETs) are wireless networks formed in real-time without additional
network infrastructure. These in-car communication devices are used to communicate be-
tween vehicles, whether for traffic safety or entertainment. Unlike other ad-hoc devices,
vehicular networks are not concerned with energy consumption for communication, as
the expense is little compared to the energy spent for the vehicle to move. Each car can
be either a source or a target node. If the origin unit is far from the destination vehicle,
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packet transmission occurs using routes to reach the destination node [2]. That is, vehicles
traveling between the origin and destination can become intermediate nodes. These ad-
hoc networks can be established anytime, anywhere, allowing cars to communicate over
a network in real-time and with great flexibility. Because of the dynamic topology of ve-
hicles on the streets, it might result in various route choices, especially in a high-density
environment [3]. Therefore, it is the function of the ad-hoc routing protocol to choose
the communication route between the vehicles that best fit each type of communication.
These algorithms allow distant hosts to communicate by forwarding messages through
intermediate devices. The high efficiency and low latency of vehicle communications are
essential than ever, and accurate delay management remains a significant problem in ve-
hicles network [4, 5]. The deviation in vehicular networks is mobility. However, unlike
other mobile networks, cars have limited mobility, as they have to follow the pattern of
city streets and their speed limitations, traffic lights, and congestion jam. The exponential
increase in network traffic volume and changing infrastructure needs require more intel-
ligent routing approaches than in the past [6]. A routing algorithm that allows a longer
lifetime in the communication between origin and destination is beneficial to optimize the
functioning of the network. When one of these devices, which is part of the path chosen
by the routing protocol, runs out of range of communication, the node becomes inactive,
and the route is broken. As a result, in vehicular ad-hoc networks, maintaining the con-
nection of each application is critical. In an ad-hoc vehicular network, there are two types
of traditional algorithms for identifying a route. The first is based on a table, while the
second is determined by demand.

A table-based routing protocol aims to maintain all nodes’ routing information sta-
ble and up to date. Each device has a table to store the routing information and peri-
odically shares this information with neighboring nodes to keep this information up to
date. As the network topology changes, each node automatically updates its routing in-
formation and informs its neighbors. Destination Sequenced Distance Vector (DSDV) is
a table-controlled protocol technique that chooses routes based on the minimum hopping
requirement [7].

In the on-demand approach, the routing system is activated when the node has data
to transmit. As a result, the overhead associated with managing routing information is
minimized. When doing routing exploration, on the other hand, they must send packets.
The productivity of a vast network topology is limited. Consequently, on-demand routing
is typically applied to small environments. Two well-known on-demand routing proto-
cols are Dynamic Source Routing (DSR) [8] and Ad-hoc On-Demand Distance Vector
(AODV) [9]. The distinction between them is that in DSR, each node has a routing buffer
where the most recent data is stored. If the current path fails, it would be simple to find a
new path.

In this work, we evaluate and examine the effectiveness of two routing methods
used in VANETs, DSR, and DSDV, and then compare them to our proposed RL-based
approach. Since they are a commonly used form of ad-hoc communication in vehicu-
lar networks today, as traffic congestion worsens, routing algorithms for ad-hoc vehicle
networks must be optimized. Even a millisecond flaw in the traffic control network can
have catastrophic consequences. Therefore, in our work, a routing protocol technique on
reinforcement learning is proposed to increase the useful life of the route, minimizing the
number of reconnections to a common destination. This study intends to suggest a solu-
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tion that considers the distance between each host and uses the location of vehicles as a
parameter, allowing each host to serve as a node in the network and exchange information
quickly and efficiently. As a result, based on the location of the destination car, an algo-
rithm using reinforcement learning is proposed to help identify the route with the most
extended lifespan rather than the shortest path, as most existing routing protocols do.

Methods

We provide strategies for enhancing the performance of our suggested technique,
such as (1) using knowledge from adjacent node locations to choose the best path and
avoiding hosts that do not bind to the target host to prevent packet loops; (2) choosing
the route with the most extended lifespan witch uses a reward feature that calculates the
distance among the hosts, and (3) using performance parameters such as route lifetime,
amount of reconnections, and hop counts, we measure the efficiency of the suggested
method. The key contributions of this article are:

• We create a reinforcement learning environment where an agent can learn to find
the path with the most extended lifetime. A procedure determines the chosen path
based on the distance between the nodes, and as a reward, the path’s lifespan is
connected.

• The impacts of existing procedures were compared between traditional algorithms
to the novel paradigm suggested in this work utilizing computer-based simulation
tools.

Although reinforcement learning has significantly influenced other fields, we believe
its promise in networking has not been completely realized. By providing an OpenAI
Gym setting, we hope to encourage studying the solutions using reinforcement learning in
routing networks. The remaining of this research paper is organized as follows: Section 2
examines the associated studies on network path protocol. Section 3 explains the proposed
algorithm. Then, the simulation setting is defined in Section 4. In Section 5, we go into
detail about how to evaluate the simulation performance. Finally, the paper comes to a
close with discussions in Section 6.

2. RELATED WORK

As related works, we will approach routing protocols in VANETs, being two tradi-
tional protocols widely used in ad-hoc networks, DSR and DSDV. These protocols were
used as a comparison in the performance of the proposed new solutions. Then, solutions
related to the lifetime of the routing path will be presented and, finally, how is the research
nowadays associated with machine learning applied to VANET.

2.1 Routing Protocols in VANETS

Ad-hoc networks are made up of wireless nodes with no centralized system, and their
topology and connection capabilities change frequently. These networks are classified as
MANETs (Mobile Ad-hoc Networks) when node movement is taken into account [10].
Vehicle Networks (VANETs) are a form of MANET in which the nodes are vehicles that
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circulate in cities or on highways. Cars in motion in current and potential Intelligent
Transport Systems would collect real-time data regarding traffic using sensors installed
around the streets. VANETs improve road protection by allowing automobiles to share
information about collisions, traffic congestion, barriers, road distortion, and traffic jams.
The mobility of VANETs is an essential factor to remember when it comes to routing.
When transmitting safety messages between vehicles, the main issues to consider are
message exchange delay constraints and complex topology variations [11].

The conventional routing strategy considers the network a weighted graph and
chooses the route with the minimum cost, satisfying QoS criteria [12]. Several relevant
indicators, such as latency, reliability, stability, and resource usage, are included in the
challenge to be solved. When several metrics are needed, the routing problem becomes
non-deterministic polynomial-time complete [13]. Heuristics have been used to achieve
near-optimal results. Research in route protocols is extended and has explored numerous
routing methods applied to different network problems. Most modern networks are com-
plex, and route optimization when accounting for complex topology variations is a sig-
nificant issue in routing. Ad-hoc vehicular networks, for example, have nodes that move,
resulting in topology changes. As a result, this topology changes causes break link con-
nection in some cases, causing the operation between nodes to be disrupted. Traditional
routing strategies based on significant assumptions about traffic patterns and network sta-
tus improvements are increasingly seen as impractical in dealing with the dynamic and
rapidly changing mobile environments. If the basic premises are not met in real-time, the
network output can deviate significantly from the expected. Due to this, reinforcement
learning is a viable solution for dealing with variable network conditions.

There were also different protocols established for transmitting traffic data without
the usage of the roadside unit. Based on the density and location of the car, this tech-
nique improves routing positively and attentively and decreases congestion along major
thoroughfares while effectively maintaining traffic reports [14].

A modern simplified multistage p-persistent protocol for vehicle-to-vehicle commu-
nications has been proposed to handle the associated explicit stochastic delay and flow
control capacities. The geometric distribution would reach the upper limit of the stochas-
tic uncertainty in the basic scenario where nodes join the pipe. According to the simula-
tion findings, the theoretical delay model would provide an overview of the upper limit
delay for services in vehicular networks [15]. An empirical technique to modeling ex-
pected latency was created to tackle the problem and enhance the efficiency of the lower
limit, utilizing a V2V connection selection algorithm focused on greedy cells [16].

The Vehicle-to-everything (V2X) architecture was developed to estimate the inten-
sity of road traffic [17]. This system uses sensors to collect details from RSUs and cars,
and the topology of the roadmap is modeled to precisely measure the vehicle’s instanta-
neous density. The V2X methods broaden the coverage area and improve the precision of
the obtained data, increasing the robustness and fault tolerance of the technique. Because
it is aware of the instantaneous density of cars, this system defines distribution protocols
for the control of traffic flow mitigation measures [18]. In addition, a control algorithm
that takes V2V interactions and vehicle details into account for equal action and reduced
waiting time has been developed [19].

Now, we will look at the two conventional ad-hoc network protocols that were used
in this research. We choose these two routing protocols to address different types in our
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simulation: reactive (DSR) and proactive (DSDV).
DSR: Dynamic source routing protocol is a straightforward, reliable routing pro-

tocol intended for ad-hoc wireless networks with several hops of moving nodes. DSR
enables the network system to be fully organized and optimized, with no prior network
infrastructure or management required [20].

The protocol comprises two frameworks, discovery and maintenance, that operate
together to enable the nodes on the ad-hoc network to learn and sustain routes between
arbitrary destinations. Using source routing eliminates the need for routing details on
the intermediary hosts from which information is redirected and permits hosts to deliver
and store this knowledge for future use. Both features of the algorithm run on-demand,
resulting in a DSR routing packet header that immediately scales to just what is required
to adapt to changes in the routing table in use [8].

DSDV: The proactive routing protocol of Destination-Sequenced Distance Vector
uses the Bellman-Ford algorithm to build a routing table. DSDV creates a routing table
for each network node. The routing algorithm DSDV made a significant contribution by
solving the routing loop problem. Because each node manages the routing table and this
table needs to be updated more frequently if a router receives new information. With this
information in the routing table, the source sends the packet to the destination via inter-
mediate nodes [21]. Each node must identify the next hop to the collector and the number
of stages away from the collector. This information can be found in the routing table [22].
The routing table entry for each node provides information such as the IP address of the
node’s most recent known sequence number and the hop count utilized to reach that node.
The database often contains a record of the next-hop neighbor to join the destination node
and the timestamp of the most recent update received for that node [23]. The packet distri-
bution rate in DSDV decreases sharply, and one of the critical explanations for this is the
usage of routes that have already been closed due to broken connections. The presence
of disrupted pathways in the DSDV does not rule out the possibility of identifying the
direction to the destination [24]. However, as automobiles increase compared to the other
protocols, the finding shows that the DSDV protocol negatively impacts. DSDV cannot
be considered as a viable choice either if the number of vehicles rises significantly [22].

The path is chosen by DSR and DSDV depending on the number of leaps. Even
though the selected route contains the lowest hops, the nodes may be far apart. As a
result, each node expends more resources on data transmission, increasing the likelihood
that an intermediate link will fail, necessitating a new route request [2]. Because of this
open issue, we propose a route-choice model that uses the path’s lifetime as a metric
rather than the number of hops.

2.2 Path Lifetime

The majority of research has been focused on developing routing algorithms that
extend the route’s existence. The researchers, however, take energy usage into account
and attempt to extend the battery life of ad-hoc network devices where power is a limiting
factor [25].

A cluster-based data collection approach to increase power quality and meet delay
constraints has been developed for ad-hoc networks [26]. In the first step, the sensors
are grouped into clusters to ensure that they can interact with the mobile data collector
within predefined hops. The route was then established using a genetic algorithm, an
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applicable technique for the optimization problem concerning discovering the shortest
path. Comparisons of the path’s useful lifetime have been made [2]. Researchers assumed
the nodes begin with varying degrees of control, and when a node in a segment dies, the
course is interrupted. The lifetime of each node in a route was calculated, and the shortest
was chosen to be the path’s lifetime, based on the total energy available at the node.
The concept is compatible with the idea that its weakest node defines a path’s strength.
They evaluate the route lifetimes obtained by different simulation routing algorithms. The
transmitting latency has been ignored for convenience, and the time required to react to
control signals has been calculated. The simulation findings show that the Maximum
Path Lifetime Routing (MPLR) [27] outperforms other models in route lifespan. In these
instances, as the scale of the region grows, life expectancy decreases dramatically.

Although the concepts are relevant to improving the valuable lifetime of the path,
such as avoiding the weakest node, since energy constraints do not apply to the vehicle
network requirements, we did not use these protocols in this work as a reference in the
simulations.

2.3 Machine Learning Applied in VANETs

Because of the nature of VANETs, there are several variables, such as disconnec-
tions, multiple paths, vehicle movements, sometimes corresponding to the layout of city
routes, with varying speed limits, and parking or stuck in traffic. Using modern technol-
ogy, such as Machine Learning (ML), makes sense to detect these trends and create more
effective communication routes as an alternative to conventional network protocols [28].

ML network applications aim to automatically learn system dynamics, such as new
traffic entries, bottleneck sites, architecture enhancements, connection efficiency, and
power usage, to improve the Quality of service provided to end-users while maximizing
network capital and supplier revenues [11].

Reinforcement learning (RL) is a machine learning class that offers a system to ben-
efit from past experiences with its environment to pick its strategy reliably. At the same
time, the agent has no previous knowledge about the system environment [29]. RL has de-
veloped autonomous systems that grow with expertise in various areas, including games
[30], health [31], robotics, power, networks, and telecommunications. It is widely recog-
nized that RL is appropriate for addressing optimization difficulties in distributed systems
in general, such as network routing. RL has a moderate overhead in control packages,
memory, and computational power than other optimization approaches used to tackle
the same issues. Many protocols have been suggested, each contributing significantly or
marginally to the area of optimum route selection for packet transmission over different
kinds of communication networks under differing QoS circumstances [11]. Specifically,
the agent examines the present condition before acting and receiving the compensation
along with the new state. The observed detail, namely the reward and the new state, is
used to modify the agent’s policy, which is then replicated until the policy approaches the
optimum policy.

Several researchers have proposed introducing quality metrics such as delay, jitter,
and loss in the routing algorithm. Machine learning approaches such as Q-learning and
neural networks were utilized to compute the candidate route for sending packets [32, 33].
A concept of a cognitive routing network was established to drive state-space optimization
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in a complex context [34]. Deep Reinforcement Learning (DRL)-based approaches have
been used by researchers to assist cognitive routing research [6, 35].

Another important aspect of previous research is that vehicle positioning information
is shared between vehicles or a central controller via routing protocols used in vehicular
networks. As a result, there is a significant amount of control overhead generated. Fur-
thermore, the sudden shift in automobiles necessitates more time for integration, which
allows the vehicle to receive incorrect details in real-time and influences the routing pro-
tocol’s behavior. As there is a hop measurement in the routing protocol, the cars collect
information only from their subsequent road section, contributing to the optimum local
challenge. As a result of these considerations, machine learning models may aid in route
discovery on VANETs [3]. The machine learning algorithm estimates the situation based
on previous and current real-time vehicle states. This prediction serves as input to the
system, allowing it to route data efficiently.

Based on the positioning of the vehicles, the analysis of the RL model utilized in
this study tracks, analyzes and predicts the action of the communication route choice.
In this study, the PPO and A2C algorithms were used, which are already used in neural
networks and reinforcement learning. These algorithms were chosen for their working
characteristics in our environment, which requires discrete parameters (vehicle numbers)
and multiple arrays of discrete values in the observation space (vehicles positioning).

A2C: When constructing machine learning algorithms, two costs must be consid-
ered: sample complexity and computing complexity. The number of interface stages be-
tween the agent and its environment is referred to as the sample complexity. On the other
hand, computational complexity refers to the number of numerical operations that must
be performed. The Asynchronous Advantage Actor-Critic (A2C) is a deterministic ver-
sion of the Asynchronous Advantage Actor-Critic (A3C) that performs equally well. The
method contains several fundamental notions, such as an updating system that calculates
the advantage function using fixed-length trial segments and shared layer structures be-
tween regulation and the meaning resource. The researchers discovered an alternative to
asynchronous implementation, where a deterministic execution expects an actor to com-
plete the experience before executing an update that averages all actors. This approach has
the benefit of making better use of GPUs, which perform well for big batches. This algo-
rithm is known as A2C, which stands for an actor-critic of advantage. The synchronous
A2C implementation outperforms the asynchronous deployments; however, there is no
indication that the noise caused by asynchrony improves efficiency. When utilizing single
GPU computers, the A2C performance is more cost-effective than A3C and quicker than
one CPU-only A3C implementation when using broader policies [36].

PPO: With supervised learning, we can quickly enforce the cost function, apply a
gradient decrease to it, and be sure that we can get excellent results with minimal hyper-
parameter modification. The road to performance reinforcement learning is not so clear
because the algorithms have several moving parts challenging to debug and take a signif-
icant amount of improvement effort to achieve successful implementation. The Proximal
Policy Optimization (PPO) algorithm attempts to compromise between simplicity of ex-
ecution, sample sophistication, and ease of modification, calculating an update for each
point that minimizes the cost function while ensuring that the variance from the previous
policy is comparatively minimal. A PPO version in which an adaptive KL penalty regu-
lates the policy adjustment in each iteration. The latest version employs a novel objective
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function not contained in other algorithms:

LCLIP(θ) = Êt [min(rt(θ)Ât ,clip(rt(θ),1− ε,1+ ε)Ât)]. (1)

This goal applies a method for making a trusted area update consistent with Stochas-
tic Gradient Descent. It simplifies the algorithm by eliminating the KL penalty and the
need for adaptive updates. Despite becoming somewhat easier to execute, this algorithm
performed the highest in continuous control tasks in simulations [37].

3. RL-BASED PATH LIFETIME ROUTING APPROACH

This paper proposes a routing method that considers the distance between nodes and
the route’s lifetime. Path lifetime is the amount of time predicted until one or more nodes
in the path leave the signal range, rendering the route invalid. Traditional ad hoc routing
systems, such as DSDV and DSR, choose a route depending on the number of hops. Even
though the selected path contains a limited number of intermediate nodes between the
origin and the destination, the distance between each pair is often high. If intermediate
nodes with shorter distances between them are selected instead, the chance of the path’s
longevity rises.

Through reward and punishment, reinforcement learning models evaluate the action
taken at each level of the system that changes state; the agent learns to maximize per-
formance. States reflect the number of vehicles that are part of the same communication
segment, such as the city center or a specific neighborhood, in the proposed model. Ac-
tions indicate the decision of the route the vehicles will take to communicate — in other
words, the path between origin and destination. The reward is estimated as the lifetime of
the chosen path after specifying numerous actions together since the system’s goal is to
maximize communication time to avoid reconnections.

3.1 Environment

OpenAI Gym [38] is an open-source framework for training, testing, and bench-
marking reinforcement learning algorithms. It includes a variety of activities, such as
those used in arcade games. Here we describe how the platform might be used as a sim-
ulation, test, and diagnostic paradigm for networking search graph conditions. We use
the OpenAI Gym tool to create the PathLi f etime environment that contains the following
components:

• The state-space S, consisting of the current state of the graph (in terms of a multi-
dimensional output of a process-based pairwise distance model) and a multifaceted
observation;

• The action space A, which consists of the next hop of the graph;

• Transitions between states, governed by the deterministic process-based model and
the distance sequence;

• The reward r, which encourages the lifetime of the path.
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Agent

ActionState Reward

Environment

Fig. 1. Reinforcement learning model: Interaction between the agent and the gym environment.

The information flow is shown schematically in Fig. 1. The framework can be ap-
plied to any process-based finding path model. In the following sections, we detail our
implementation choices.

Observation space: As shown in Fig. 1, the observation state is composed of the
current graph and its three previous states. Since we cannot know which way the cars are
moving, this violates Markov’s property [39]. The alternative is to hold some observations
from the past and use them as a state. We propose keeping four successive locations
together and observing each state; thus, this preprocessing stacks four rows, resulting in
final state space in the matrix of 4×N columns. In other words, it is composed of a matrix
that has the combination of all possible communication pairs (links) based on the distance
between the vehicles. The matrix is exemplified in Eq. (2).

S =


Dt(0,1) ... Dt((n−1),n)

Dt−1(0,1) ... Dt−1((n−1),n)
Dt−2(0,1) ... Dt−2((n−1),n)
Dt−3(0,1) ... Dt−3((n−1),n)

 (2)

Where D means the distance between the hosts, t is the current timestamp, n is
the number of vehicles in a given area, and the number of columns of the matrix is the
combination of the pairs of hosts without repetition given by Eq. (3) as known as the
binomial coefficient of pairs.

(
n
2

)
=

n!
2!(n−2)!

(3)

Action space: The action space is discrete in this case and given the number of
vehicles in a given area, such as the downtown. It consists of cars that can be part of the
path, either as origin, destination, or intermediate nodes.
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Reward: The reward function is defined in three zones. The success zone corre-
sponds to the destination of the package. The viability zone is determined when the cho-
sen S state can be part of the path. The rupture zone is when the selected state does not
exist or cannot be part of the path (due to the distance between the current node and the
next hop), but the reward function will receive the reward value if it reaches the success
zone. Therefore, we can summarize the reward as Eq. (4).

R =

{
li f etime ; i f t = dst

0 ; otherwise (4)

Where t means the target, dst the destination node. We also use the path search
condition and route selection function described in Eq. (5).

C =


stop ; i f t = d

nextaction ; i f |E| ∃
searchnode ; i f |E| ∄
avoidloop ; i f s ∈ Path

(5)

Where d is the distance, and r is the range of communication in meters.

3.2 Algorithm

The formalization of the method:
Let H <V,E,D > a direct graph with an attribute related to the given VANET archi-

tecture, where communication may take place in both directions. Where V = {n0, ...,nW}
is the set of vertices with |V | = N, where N is the number of nodes, in this case,
the vehicles that can participate in the communication, and E = {(n0,n1)1,(n1,nm)2,
...,(n j,nD)M} is the set of edges with |E| = M; and D is a set of non-negative attribute
functions. For each edge e = (u,v) ∈ E, there is a function: weight function de(t) ∈ D
where d is the distance variable between the two nodes. A weight function de(t) specifies
the distances from u to v, starting from u in time t.

Algorithm 1 represents the pseudo-code used to describe the step function of the
PathLi f etime OpenAi Gym environment. The reinforcement learning algorithms will
learn to find the longest lifetime path of the dynamic graphs.

We have four main functions in the algorithm: Li f etime, Reset, Observation, and
Step. The Li f etime function calculates the time of life of the chosen path. The Reset
function is called when the path loops. The Observation function calculates the distance
between all vehicles based on the Cartesian position of each vehicle and stores the current
length and the last four distances between cars. The primary function of the algorithm
is the Step function, where reinforcement learning algorithms will learn after each action
to seek the greatest reward, that is, an extended lifetime of the chosen path, based on the
observation space. The Step function has four test conditions. The first is whether there
is a link between the current position and the next node chosen by the action. It proceeds
to the following tests; otherwise, the algorithm must select another node to be part of the
route. We need the test condition action ∈ path to avoid looping; if the chosen action is
already part of the path, it means that a specific node has already been selected previously
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Algorithm 1 : Step Function
if H.has edge(position,action) then

if action = target : then
reward = li f etime()
done = True

else
if action ∈ path : then

reward = 0
done = False
reset()

else
path.append(action)
position = action
reward = 0
done = False

end if
end if

end if

to be part of the path to close a cycle. It means that the route enters a loop, which is not
desirable in any routing protocol. That is why the Reset function is called. After the first
condition, it will be tested whether the chosen action is equal to the target; if so, it means
that the path has reached its final destination, and it is possible to calculate the lifetime of
that path and finish the execution of the algorithm for that particular path. If the chosen
action is not part of the path yet, this is a suitable action and can be selected. However, the
reward is still null, and the algorithm is not finished. Just one more node was found that
could be part of the route path. At the end of the condition tests, the Observation function
returns the four standard variables of the OpenAi Gym environment (obs, reward, done,
in f o).

The NetworkX tool is a package of the Python programming language, which creates
and manipulates the dynamic structure of complex networks [40]. This tool was used to
build the connection graph between vehicles. The two main functions, H.has edge, are
to check if the link between the current property and the next node is still active, and
H.has path to check how long the route remains active, making it possible to calculate
the route lifetime.

4. SIMULATED ENVIRONMENT

Researchers often use computer simulation programs to test and assess the findings
of their study since they are more flexible and less expensive than real-world implemen-
tation. To assess the performance of the suggested approach, we ran a computer-based
simulation. OpenAI Gym and Python were used as simulation tools because both are
computationally efficient and practical. A generic grid map of the city was used as a
backdrop in our simulation, called the Manhattan [41] grid. We decided on a time limit
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of five minutes for this simulation activity, and the Urban Mobility (SUMO) [42] simula-
tion was used to create a realistic environment. The SUMO program is open-source and
offers a simple framework for simulating land transport modes. It generates a simulation
in which automobiles and pedestrians can be viewed as nodes, and a network is con-
structed. It includes a collection of improvised tools that serve as a valuable platform for
establishing numerous situations that a researcher can consider for his experiment [24].

Fig. 2 displays a city with a five-block grid layout. This model uses a grid road design
to mimic the movement pattern of mobile nodes in metropolitan situations. This mobility
model features horizontal and vertical highways, nodes put on the map at random at the
start of the simulation, and the option to change lanes. When a node hits a junction, it
may move left, right or straight, randomly [43].

Fig. 3 illustrates the Diagram Process Flow for the Experimental Setup, and various
stages are required to build up this model. First, we created the map using the Netedit
program (Manhattan grid). The randomTrips program was used to produce paths of the
cars, resulting in the route.xml. The configuration file sumo.cfg was used to complete
the first phase of the simulation with the SUMO tool. The traceExporter program may
generate the gpsDat file used in the python simulation of the proposed OpenAI Gym algo-
rithm and the two other routing algorithm implementations utilized in today’s VANETs,
the DSR and DSDV routing protocols.

Fig. 2. The urban environment in SUMO is configured with a five block topology simulation. This
model portrays a typical urban area.

Fig. 3. The information flow utilized to illustrate and test the proposed method is depicted in the
simulation configuration diagram.
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5. RESULTS AND DISCUSSION

Simulations were carried out to show the efficiency of the proposed algorithm. Com-
parison between the two existing protocols, DSR and DSDV, and our proposed scheme
that uses reinforcement learning was made. Each protocol was simulated with ten vehicles
being evenly distributed and random travel to generate traffic, as explained in the simula-
tion chapter. Three different communication ranges, with 100, 200, and 300 meters, were
also used to test the efficiency of the proposed algorithms.

The following metrics were used to evaluate the performance of the proposed proto-
col: (1) Li f etime mean of the path, that is, the path that exists between the same source
and destination. (2) Number of connection transitions, that is, the number of route changes
between the source-destination path during the simulation time. (3) The LengthPath mean
is the average number of hops that routes have. As shown in Fig. 4, PPO and A2C agents
obtain a higher average reward than standard DSR and DSDV communication protocols.
In other words, the route paths chosen by reinforcement learning agents have a longer life
span. In the best scenario, when the maximum allowed speed is 30km/h and the commu-
nication range is 300 meters, the difference between the path chosen by the PPO agent
compared to DSR or DSDV algorithms almost doubles the lifetime of the route path on
average, during the simulation time.
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Fig. 4. Lifetime mean.

This evaluation is critical in data communication, especially in mobile vehicular net-
works, increasing the route’s lifetime, consequently decreasing the number of reconnec-
tions and overheads of the protocol, as shown in Fig. 5.

We achieved half of the connection transitions with the proposed methodology than
PPO and DSR or DSDV when we have a 30km/h speed and a communication range of
300 meters Fig. 5 (a). In the simulation time of five minutes, when we use the protocols
of conventional networks, ten transitions occur. In contrast, when we use intelligent al-
gorithms to increase the life of the route, the PPO algorithm occurs only five shifts of the
route path. Although both artificial intelligence agents are superior to conventional pro-
tocols in all the simulations carried out, the PPO agent had a slight advantage compared
to the A2C agent, either in the lifetime of the path or in the number of transitions.

As the lifetime of the chosen route paths is significantly longer, this does not mean
that the selected route is the shortest; that is, it has fewer hops.



142 LINCOLN HERBERT TEIXEIRA AND ÁRPÁD HUSZÁK
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Fig. 5. Connection transition.

Next, the number of hops of the paths chosen by each algorithm obtained in the
simulations will be compared. This information is essential, as each additional hop used
in communication increases the probability of packet loss and signal attenuation.
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Fig. 6. LengthPath mean.

Therefore, as seen in Fig. 6, the average hop size of the paths chosen by intelligent
agents is equal to or greater than traditional protocols, as expected. It happens because,
in this work, we are not concerned with the number of hops on the chosen path but with
the probability that it will live longer. However, although the average number of hops
of the algorithms used in RL is higher than the traditional algorithms, DSDV and DSR,
the difference is not significantly more prominent, reaching 23% in the worst case, seen
in Fig. 6 (a). It means an average of two hops more compared to traditional algorithms.
Two other figures were used with the same metric but exposed differently to visualize the
lifetime gain compared to the path length (hops).

Fig. 7 shows the probability mass function of the measured path length in hops. This
graph compares the route selection algorithms at three different speed limits of the cars,
with 30, 50, and 70 km per hour, where 200 meters of radio range is considered for the
vehicles to communicate.

On the other hand, Fig. 8 has the same simulation configuration and compares the
reward, that is, the path lifetime of the chosen route, for each simulated algorithm. We
can say that the paths chosen by the RL tool have a uniform distribution compared to
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traditional algorithms. We realize that traditional algorithms focus their choices on the
shortest-lived paths because these algorithms are not concerned with maintaining connec-
tivity, only with finding the shortest path. It further affirms the relevance of our work,
as traditional protocols should not be used in highly mobile networks such as vehicular
networks, but rather tools that help us choose efficient routes should be used nowadays.

In order to prove the effectiveness of the RL algorithms chosen to solve the problem
proposed in this work, Fig. 9 shows the learning curve during model training, of the two
algorithms used in this article, PPO and A2C. This graph shows us the average rewards
accumulated during model training.
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Fig. 7. LengthPath histogram.
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Fig. 8. Reward histogram.

6. CONCLUSION

We introduced a new Gym environment to study the routing network strategies for
VANET and discussed the considerations we made during the design process of the
PathLi f etime Gym environment. We have implemented a reactive agent, standard practi-
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Fig. 9. Trainning model reward mean.

ce, and an agent trained with PPO and A2C that serve as a baseline for future investiga-
tions and research. The PPO agent learned strategies with a greater reward than the other
chosen agent, A2C, demonstrating that reinforcement learning agents can identify differ-
ent route paths for each chosen scenario and configuration, primarily if they used vari-
ous forms of reward. Compared with other classic algorithms currently used as DSDC
and DSR, intelligent learning algorithms, which used reinforcement learning and were
presented in this work, significantly gained the studied metrics. The future of telecom-
munications applied to complex networks with high mobility and specific requirements,
like VANETs, should not be tied to the classic route algorithms but should broaden their
horizons. Using new machine learning technologies techniques to adapt to the future of
data communication is an alternative.
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